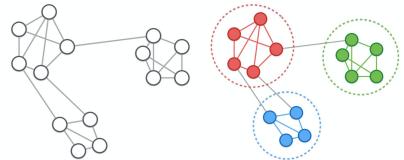
seqSCAN: Unsupervised Classification of Proteins for New Function Discovery

Meet Barot, Vladimir Gligorijevic, Kyunghyun Cho, Richard Bonneau

Unsupervised learning is crucial for biological data

- Most data in biology is unlabeled
 - Experiments are expensive, error-prone
 - Supervised learning algorithms are limited by this
- Most label sets are incomplete
- We need tools to get functional categories of proteins whether they have labels or not
- Discovery of these categories can enable us to infer new GO terms, correct old terms, and create entire ontologies



https://blog.insightdatascience.com/graph-based-machine-learning-6e2bd8926a0

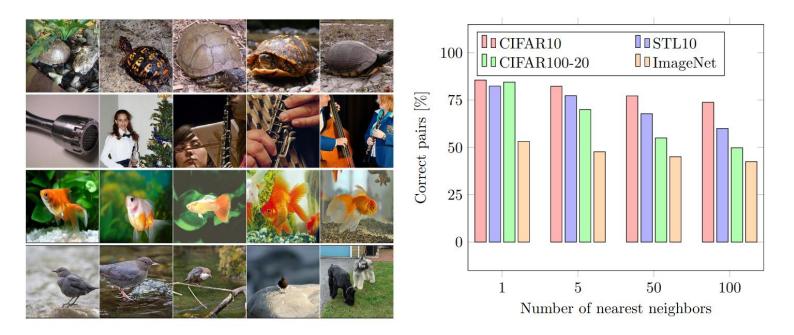
Clustering with neural networks

- A neural network trained to cluster proteins would be able to be trained batchwise and have constant time inference for a new protein
 - For methods like spectral clustering, inference requires computing pairwise similarities to previous samples
- Using class activation maps, we would be able to highlight specific parts of the protein that correspond to these hypothetical classes
- Feature learning can be combined with the clustering process in neural networks

Step 1: Self-supervised model to learn feature space

 $\min_{\theta} d(\Phi_{\theta}(X_i), \Phi_{\theta}(T[X_i])).$

Van Gansbeke, Wouter, et al. "Learning To Classify Images Without Labels." *arXiv preprint arXiv:2005.12320* (2020).



nearest neighbors (other columns) 51. instances of the same semantic class.

Fig. 1: Images (first column) and their Fig. 2: Neighboring samples tend to be

Step 2: Train previous neural network, now with a softmax output, with the following loss:

$$\begin{split} \Lambda &= -\frac{1}{|\mathcal{D}|} \sum_{X \in \mathcal{D}} \sum_{k \in \mathcal{N}_X} \log \langle \Phi_\eta(X), \Phi_\eta(k) \rangle + \lambda \sum_{c \in \mathcal{C}} \Phi_\eta^{\prime c} \log \Phi_\eta^{\prime c}, \\ &\text{with } \Phi_\eta^{\prime c} = \frac{1}{|\mathcal{D}|} \sum_{X \in \mathcal{D}} \Phi_\eta^c(X). \end{split}$$

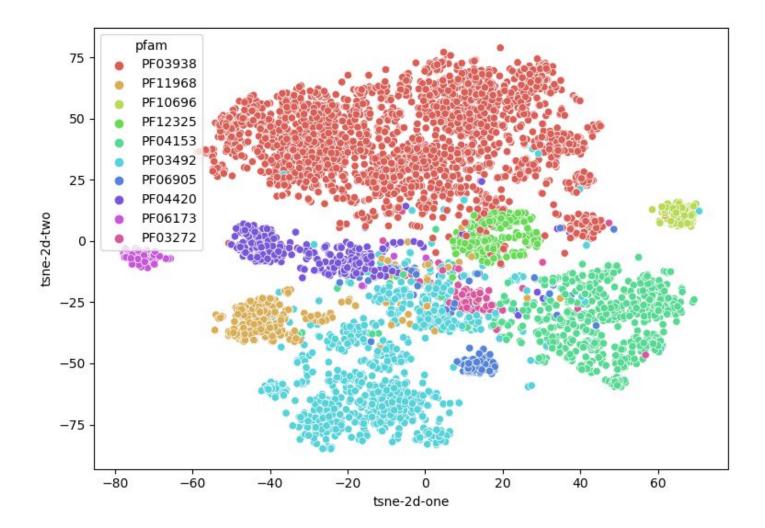
Van Gansbeke, Wouter, et al. "Learning To Classify Images Without Labels." *arXiv preprint arXiv:2005.12320* (2020).

Dataset	CIFAR10			CIFAR100-20			STL10		
Metric	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
Supervised	93.8	86.2	87.0	80.0	68.0	63.2	80.6	65.9	63.1
Pretext $7 + K$ -means	65.9 ± 5.7	59.8 ± 2.0	50.9 ± 3.7	39.5 ± 1.9	40.2 ± 1.1	23.9 ± 1.1	65.8 ± 5.1	60.4 ± 2.5	50.6 ± 4.1
\mathbf{SCAN}^* (Avg \pm Std)	81.8 ± 0.3	71.2 ± 0.4	66.5 ± 0.4	42.2 ± 3.0	44.1 ± 1.0	26.7 ± 1.3	75.5 ± 2.0	65.4 ± 1.2	59.0 ± 1.6
\mathbf{SCAN}^{\dagger} (Avg \pm Std)	87.6 ± 0.4	78.7 ± 0.5	75.8 ± 0.7	45.9 ± 2.7	46.8 ± 1.3	30.1 ± 2.1	76.7 ± 1.9	68.0 ± 1.2	61.6 ± 1.8
\mathbf{SCAN}^{\dagger} (Best)	88.3	79.7	77.2	50.7	48.6	33.3	80.9	69.8	64.6
\mathbf{SCAN}^{\dagger} (Overcluster)	86.2 ± 0.8	77.1 ± 0.1	73.8 ± 1.4	55.1 ± 1.6	50.0 ± 1.1	35.7 ± 1.7	76.8 ± 1.1	65.6 ± 0.8	58.6 ± 1.6

Pfam Experiment --- seqSCAN

- Using self-supervised sequence model to extract useful features from sequence (language model trained on 10 million protein sequences from Pfam)
- Dataset of 10 protein families, total ~6000 proteins
- Evaluate clusters obtained using Normalized Mutual Information (NMI) with respect to protein family labels

$$NMI(\Omega, \mathbb{C}) = \frac{I(\Omega; \mathbb{C})}{[H(\Omega) + H(\mathbb{C})]/2}$$

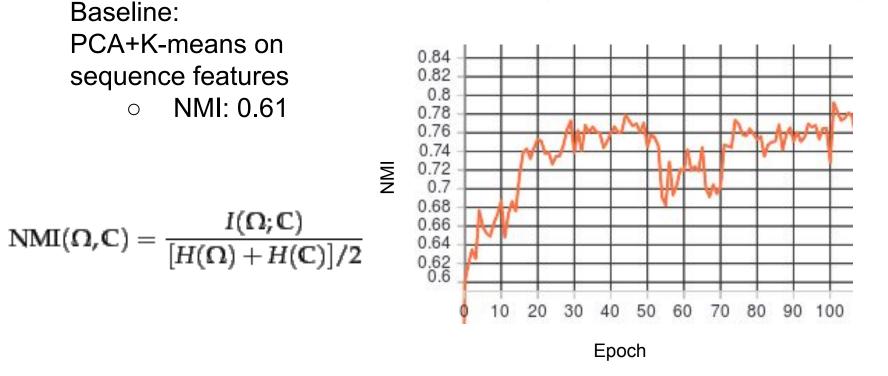


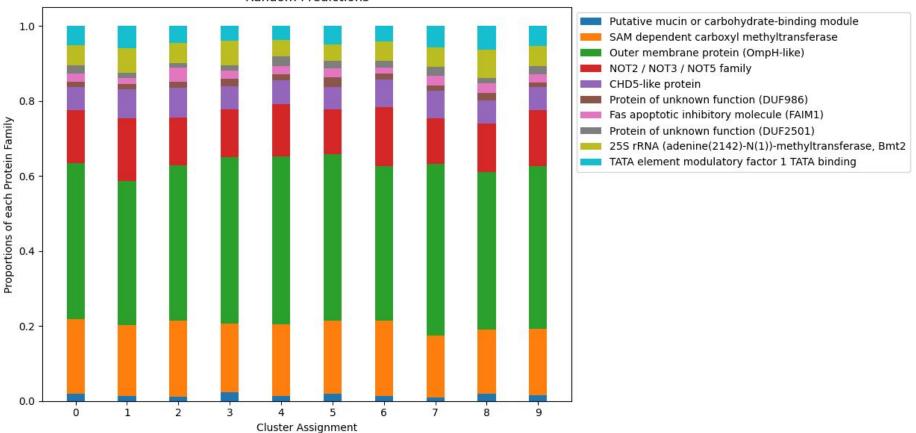
Using SCAN loss to cluster proteins using learned features

- Train a single-layer model on the learned features with softmax output with the SCAN loss function:

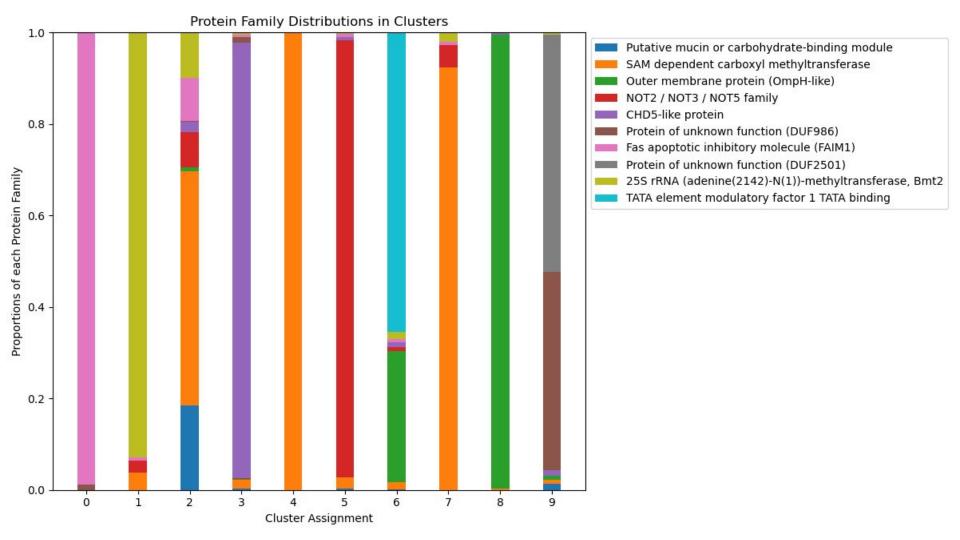
$$\begin{split} \Lambda &= -\frac{1}{|\mathcal{D}|} \sum_{X \in \mathcal{D}} \sum_{k \in \mathcal{N}_X} \log \langle \Phi_\eta(X), \Phi_\eta(k) \rangle + \lambda \sum_{c \in \mathcal{C}} \Phi_\eta^{\prime c} \log \Phi_\eta^{\prime c}, \\ & \text{with } \Phi_\eta^{\prime c} = \frac{1}{|\mathcal{D}|} \sum_{X \in \mathcal{D}} \Phi_\eta^c(X). \end{split}$$

NMI during "SeqSCAN" Training



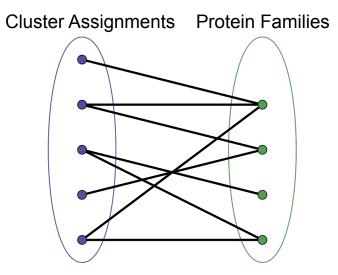


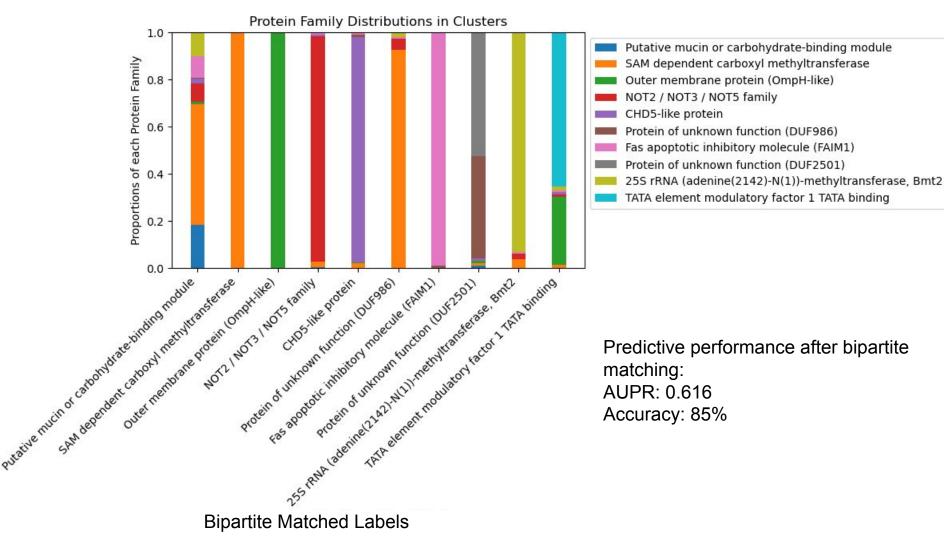
Random Predictions



Matching cluster assignments with labels

- Bipartite matching: maximizing accuracy of the cluster assignments with respect to their protein families





Scaling up to PfamA

- Training clustering model on 16 million proteins (15k Pfam families)
- Test on 1.8 million proteins (13k families)

	PCA+K-means	seqSCAN
Training NMI	0.499	0.516
Test NMI	0.523	0.541

Vladimir Gligorijević Research Scientist

www.meetbarot.com meetbarot@nyu.edu

Richard Bonneau

The Bonneau lab!

Kyunghyun Cho

